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ABSTRACT

Aims. We performed a spectral fitting for a set of O-type stars based on self-consistent wind solutions, which provide mass-loss rate
and velocity profiles directly derived from the initial stellar parameters. The great advantage of this self-consistent spectral fitting is
therefore the reduction of the number of free parameters to be tuned.
Methods. Self-consistent values for the line-force parameters (k, α, δ)sc and subsequently for the mass-loss rate, Ṁsc, and terminal
velocity, 3∞,sc, are provided by the m-CAK prescription introduced in Paper I, which is updated in this work with improvements such
as a temperature structure T (r) for the wind that are self-consistently evaluated from the line-acceleration. Synthetic spectra were
calculated using the radiative transfer code FASTWIND, replacing the classical β-law for our new calculated velocity profiles 3(r) and
therefore making clumping the only free parameter for the stellar wind.
Results. We found that self-consistent m-CAK solutions provide values for theoretical mass-loss rates of the order of the most recent
predictions of other studies. From here, we generate synthetic spectra with self-consistent hydrodynamics to fit and obtain a new set of
stellar and wind parameters for our sample of O-type stars (HD 192639, 9 Sge, HD 57682, HD 218915, HD 195592, and HD 210809),
whose spectra were taken with the high-resolution echelle spectrograph HERMES (R = 85 000). We find a satisfactory global fit for
our observations, with a good accuracy for photospheric He I and He II lines and a quite acceptable fit for H lines. Although this
self-consistent spectral analysis is currently constrained in the optical wavelength range alone, this is an important step towards the
determination of stellar and wind parameters without using a β-law. Based on the variance of the line-force parameters, we establish
that our method is valid for O-type stars with Teff ≥ 30 kK and log g ≥ 3.2. Given these results, we expect that the values introduced
here are helpful for future studies of the stars constituting this sample, together with the prospect that the m-CAK self-consistent
prescription may be extended to numerous studies of massive stars in the future.

Key words. hydrodynamics – methods: analytical – stars: early-type – stars: mass-loss – stars: winds, outflows –
techniques: spectroscopic

1. Introduction
Massive stars strongly influence the interstellar medium by
means of their winds, which carry momentum, energy, and
chemical elements (see reviews from Kudritzki & Puls 2000;
Puls et al. 2008). The study of their stellar winds is then
an important topic in stellar astrophysics because it connects
the physics of the mechanism generating the outflows of mas-
sive stars with the observed phenomena at a Galactic level,
such as stellar evolution -and subsequently, stellar populations-
or gas dynamics at the Galactic centre (Cuadra et al. 2008),
and even at a extragalactic level, such as the so-called wind-
momentum-luminosity relation (Puls et al. 1996; Kudritzki et al.
1999).

Through the pioneering work of Lucy & Solomon (1970), we
know that the winds of hot stars are accelerated by the radiation

field emanating from the photosphere of the star. Momentum
is delivered to the wind primarily by scattering (absorption or
re-emission) of photons in bound-bound (i.e. line) transitions.
A quantitative description of line-driven winds was first per-
formed by Castor et al. (1975, called the CAK theory) and was
later improved by Abbott (1982), Pauldrach et al. (1986), and
Friend & Abbott (1986, called modified or m-CAK theory). The
approximations and assumptions underlying m-CAK and their
implications for the wind dynamics have been extensively dis-
cussed (Schaerer & Schmutz 1994; Puls et al. 2008; Krtička &
Kubát 2010); the most important approximation is the Sobolev
approximation (Sobolev 1960; Castor 1970), which allows a
description of the line-acceleration in terms of local wind quan-
tities and the photospheric flux (Castor et al. 1975; Lamers &
Cassinelli 1999).
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The beauty of m-CAK theory is that it provides key insights
into the relation between the line-force parameters (k, α, δ)
and fundamental parameters describing the atomic transitions
responsible for driving the flow, such as their g f -values and
their line-statistics (see Puls et al. 2000). Moreover, these line-
force parameters provide a solution for the wind hydrodynamics,
which is beyond the so-called β-law. Another approach for
studying stellar winds is to use the Sobolev approximation in
conjunction with Monte-Carlo simulations. One of the most
well-known studies is the Monte-Carlo simulations performed
by Vink et al. (2000, 2001), whose theoretical mass-loss rates
have been widely used to calculate evolutionary tracks (Georgy
et al. 2012; Ekström et al. 2012). Unfortunately, improved obser-
vational studies have shown discrepancies between these Vink
rates and observations (e.g., Bouret et al. 2005, 2012).

In parallel, a renewed effort has been made in past years to
improve our understanding of line-driven winds beyond the m-
CAK. Sander et al. (2017) calculated consistent line-acceleration
and hydrodynamics for the particular case of ζ-Puppis using the
PoWR code (Gräfener et al. 2002; Hamann & Gräfener 2003),
whereas Krtička & Kubát (2017, hereafter KK17) provided new
confident theoretical values for wind parameters of O dwarfs,
giants, and supergiants by solving the radiative transfer equation
and hydrodynamics simultaneously using the Sobolev approxi-
mation for transition rates and co-moving frame (CMF) for the
calculation of the radiative force. We also mention the recent
studies of Sundqvist et al. (2019) and Björklund et al. (2021),
who used their full non-local (NLTE) CMF radiative transfer
solutions from the code FASTWIND (Santolaya-Rey et al. 1997;
Puls et al. 2005; Sundqvist & Puls 2018) to calculate the radiative
acceleration responsible for wind driving. In the same line, we
highlight the study by Gormaz-Matamala et al. (2021), who also
performed a self-consistent calculation of hydrodynamics and
radiative acceleration under a full NLTE treatment using CMF-
GEN (Hillier 1990a,b; Hillier & Miller 1998). However, all these
works require a considerable computational effort, which at the
moment prevents the creation of a large grid of self-consistent
solutions for a wide range of temperatures and masses.

Based on the m-CAK theory, Gormaz-Matamala et al.
(2019, hereafter Paper I) developed a prescription to derive self-
consistent solutions given different sets of stellar parameters
for hot massive stars, following the quasi-NLTE treatment for
atomic populations of Mazzali & Lucy (1993), the radiation field
calculated from TLUSTY (Hubeny & Lanz 1995), and the hydro-
dynamic solutions performed by HYDWIND (Curé 2004; Curé &
Rial 2007). Likewise, Araya et al. (2017) self-consistent velocity
profiles calculated from this m-CAK prescription can be intro-
duced in FASTWIND to calculate synthetic spectra without any
β-law. Paper I demonstrated that this prescription provides use-
ful theoretical wind parameters for different sets of temperature,
surface gravities, abundances, and even the rotational veloc-
ity, whose derived synthetic spectra quickly approach a fair fit.
Moreover, the line-force parameters have recently been used to
cover a broader range of temperatures, although an LTE scenario
was assumed and an optical depth was considered that are incon-
sistent with the hydrodynamics (Lattimer & Cranmer 2021). In
this work, we proceed in the usage of the m-CAK prescription
performed by Paper I and it to the spectral fitting of a sample of
late-type O stars observed by the HERMES spectrograph. From
this spectral analysis, we obtain new stellar and wind parame-
ters for the stars of the sample (HD 192639, 9 Sge, HD 57682,
HD 218915, HD 195592, and HD 210809), which are compared
with previous studies. We also introduce small improvements in
the calculation of the line-force parameters, such as a stratified

temperature profile and a more robust handling of the errors for
our solutions.

This paper is organised as follows. Details of these improve-
ments and a brief description of their implications are given
in Sect. 2. Details of the HERMES spectrograph and the spec-
tra of the sample are provided in Sect. 3. A description of the
steps required to obtain the synthetic spectra from the self-
consistent solutions is given in Sect. 4. The results, with the new
stellar and wind parameters measured for our sample, are pre-
sented in Sect. 5. Finally, Sects. 6 and 7 offer the discussion and
conclusions of our work, respectively.

2. Self-consistent solutions under m-CAK
prescription

The study performed in Paper I provided an exhaustive anal-
ysis of the line-force parameters k, α, and δ from the CAK
theory (Castor et al. 1975; Abbott 1982), calculating them self-
consistently with the hydrodynamics derived for the wind by
the code HYDWIND (Curé 2004). We call the velocity 3(r) and
density ρ(r) profiles that describe the wind wind hydrodynam-
ics. These two profiles are closely coupled by the equation of
momentum,

3
d3
dr

= −1
ρ

dp
dr
− GMeff

r2 + ges k t−α
(Ne

W

)δ
, (1)

where the term ∝dp/dr is the dependence on the pressure gradi-
ent, and the term ∝Meff/r2 is the dependence on the gravitational
force. The last term corresponds to the line-acceleration, where
the line-force parameters (k, α, δ) describe the force multiplier

M(t) = k t−α
(Ne

W

)δ
=
gline

ges
, (2)

which is given this name because it multiplies the acceleration
due to electron scattering, ges. We note thatM(t) is presented as
a function of t, the CAK optical depth

t = σes3th ρ(r)
(

d3
dr

)−1

, (3)

with σes being the electron scattering opacity and 3th the mean
thermal velocity of the protons of the wind. This t term is defined
by the CAK theory (Castor et al. 1975) and it only depends on the
wind structure, differently from the usual optical depth τ, which
depends on the structure and composition of the wind. The force
multiplier also depends on the ionisation density Ne/W, which
corresponds to the electron density divided by the geometrical
dilution factor W.

Hence, k, α, and δ are calculated by fitting M(t) over a 2D
plane formed by the CAK optical depth t and the ionisation
density Ne/W, where t is constrained in the range in which the
Sobolev approximation can be assumed (i.e. the inner limit is
the sonic point of the wind, and the outer limit is the infinite).
As previously noted in Paper I, the optical depth t decreases at
infinitum, but never reaches zero. The reason is that at larger
distances, both density profile and velocity gradient in Eq. (3)
become proportional to ∼r−2, so that both factors cancel each
other out. The meaning and effects of each of the line-force
parameters over the line-acceleration and subsequently over the
wind parameters are summarised in Gormaz-Matamala et al.
(2019, Sect. 2). In addition to Eq. (1), the velocity and density
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profiles are also connected to each other by means of the mass-
conservation equation, where the term for the mass-loss rate, Ṁ,
is introduced,

ρ(r) =
Ṁ

4πr23(r)
. (4)

As a consequence, new theoretical values for the wind
parameters (mass-loss rate, terminal velocity) can be determined
for any specific set of stellar parameters (effective temperature,
surface gravity, stellar radius, abundances). In the particular
case of mass-loss rates, self-consistent values have proven to
agree with those determined by observations when homoge-
neous wind is assumed (see Fig. 13 in Gormaz-Matamala et al.
2019); whereas for the case of clumped winds, the clumping fac-
tor is a free parameter in the spectral fitting. This is an important
result because these spectral fittings were achieved without using
the power law that is commonly assumed to describe the velocity
profile of stellar winds, namely β-law

3(r) = 3∞
(
1 − R0

r

)β
. (5)

This description, even when adjusted to the observations, is not
derived from hydrodynamic calculations and then is justified a
posteriori (Kudritzki & Puls 2000). Therefore, self-consistent
velocity fields cannot be described by any β exponent (see
Fig. 1), and thus they need to be calculated from the m-CAK
equation of motion (Eq. (1)) following the recipe introduced
by Curé (2004). This departure from β-law agrees with that
observed for the self-consistent solutions calculated from the
Lambert-procedure in Gormaz-Matamala et al. (2021), where
the new velocity profile could not be recovered by any β expo-
nent. However, it is necessary to remark that the calculated
velocity field differs from the line-force parameters, compared
with hydro solutions in the CMF: if we compare our Fig. 1 with
Fig. 9 from Gormaz-Matamala et al. (2021), we observe a steeper
profile at the base of the wind for the case of 3(r) calculated
from m-CAK prescription. This is because the CMF approach
accounts for non-Sobolev effects such as source-function dip,
back-scattering, or line overlaps, and line-acceleration calculated
in CMF additionally does not present an explicit dependence on
velocity gradient or velocity (see discussion from Sect. 5.3 of
Sundqvist et al. 2019), and therefore it is very different from the
CAK framework. Nevertheless, in spite of these discrepancies
between the velocity profile for the subsonic region of the wind,
they are not translated into the synthetic spectra. We performed a
posteriori self-consistent solutions with a subsonic region based
on the CMF approach (following the coupling strategy intro-
duced in Gormaz-Matamala et al. 2021, see their Sect. 2.1.1)
and eventually found that the resulting differences in the syn-
thetic spectra are just marginal. Hence, we continued without
modifying the subsonic region for our self-consistent velocity
profiles.

The spectral fitting for the self-consistent solutions from the
m-CAK prescription was performed with the radiative transfer
code FASTWIND (Santolaya-Rey et al. 1997; Repolust et al.
2004; Puls et al. 2005), which has the option of using a veloc-
ity profile generated from a formal solution of the equation of
motion as input instead of a classical β-law (Araya et al. 2017).
Thus, it is possible to create synthetic spectra in which the
wind parameters are not longer free, but depend on the stellar
parameters. This reduces the number of free parameters. Based
on this statement, we implement a method for fitting spectral
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Fig. 1. Velocity profile generated from a self-consistent wind solution
using the m-CAK prescription, compared with some 3(r) following β-
law. The bottom panel corresponds to a zoom into the base of the wind.

observations in which the wind parameters are subordinate to
the fit of the stellar parameters that generate them.

The self-consistent m-CAK solutions provided by Paper I
were shown to be reliable for a wide range of O stars. Studies
aiming for a self-consistent prescription under a full NLTE treat-
ment, such as Gormaz-Matamala et al. (2021), have provided
only slightly different results. However, we considered improve-
ments of our m-CAK prescription necessary, especially to rectify
the high terminal velocities provided by it. For this reason, we
introduce in the next subsection a stratification for the radial
temperature of the wind, which replaces the assumption of an
isothermal wind for the calculation of the line-force parameters.

2.1. Stratification of temperature

A complete inclusion of a temperature structure requires a
sophisticated calculation of the radiative equilibrium and the
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electron balance through the wind, which is commonly made
using radiative transfer codes such as CMFGEN, PoWR, or
FASTWIND. Because the solution of radiative equilibrium is
beyond the scope of our procedure, we introduce a stratification
for the temperature field over the wind based on the simpli-
fied prescription used previously by Sundqvist et al. (2019), and
based on the Lucy (1971) estimation for a temperature structure
in a spherically extended envelope,

T (r) = Teff

[
W(r) +

3
4
τF

]1/4

, (6)

with W(r) being the dilution factor

W(r) =
1
2

(
1 −

√
1 − R2∗/r2

)
, (7)

τF being the flux-weighted optical depth

τF(r) =

∫
κF(r′) ρ(r′)

(R∗
r′

)2

dr′, (8)

and κF being the flux-weighted mean opacity

κF(r)F(r) =

∫ ∞

0
κνFνdν. (9)

This means that the mean opacity, even when it typically is calcu-
lated by radiative transfer, is directly connected to the radiative
acceleration of the stellar wind (see Eq. (3) in Sundqvist et al.
2019),

grad(r) =
κF(r)L∗
4πcr2 =

κF(r)F(r)
c

, (10)

Then, including the relation between radiative and line-
acceleration (Eqs. (3) and (6) from Gormaz-Matamala et al.
2021), it is possible to rewrite the flux-weighted optical depth
as

τF(r) =
4πcR2

∗
L∗

∫ [
gline(r′) + ggrav(r′)Γe

]
ρ(r′) dr′, (11)

with ggrav(r) = GM∗/r2 and Γe being the Eddington factor
(Gormaz-Matamala et al. 2021, Eq. (4)). For details, see the
step-by-step calculation in Appendix A.

Because the entities inside the integral are calculated by
our m-CAK prescription, it is possible to compute the flux-
weighted mean optical depth simultaneously with the iterative
loop calculations, and thus the final stratificated temperature is
self-consistent with the final line-acceleration. Like Sundqvist
et al. (2019) and Puls et al. (2005), we imposed a ground temper-
ature of T (r) = 0.4 Teff to avoid excessively low temperatures at
larger distances.

2.2. Temperature structure and line-force parameters

The direct effects of the change in temperature over the wind
are the alteration of the excitation and ionisation stages for the
atomic populations, being the lower levels more present in the
more external parts of the wind with respect to the case of a fixed
temperature for the wind. Since lower stages of ionisation tend
to have more lines (Abbott 1982; Puls et al. 2000), a tempera-
ture structure should generate a larger contribution to the line
force in the outer region of the wind, which can be translated into

higher values for the line-force parameter α. However, this trend
is observed only for low values of Teff: variation in α passes from
diminishing its value (in comparison with the fixed-temperature
case) for hotter effective temperatures to slightly enhance it for
cooler Teff. At the same time, the variation in δ (directly linked
with the ionisation of the wind) seems to be just marginal, with
the exception of the 32 kK star.

Another consequence of the stratification of the temperature
is the restructuring of the optical depth t (Eq. (3)), which is
implicitly dependent on T (r), in particular, 3th, which is the mean
thermal velocity of the protons of the wind,

3th(r) =

√
2kBT (r)

mH
, (12)

with kB being the Boltzmann constant. Because the temperature
through the wind is no longer constant, this thermal velocity
decreases as radial distance increases, and subsequently, the opti-
cal depth. As a result, we observe from Fig. 2 that the range in
which the force multiplier is calculated appears to be shifted to
lower values for t. Subsequently, this displacement produces a
direct decrement of the line-force parameter k, and therefore also
of α and δ due to the iterative loop searching for self-consistency.

The wind parameters calculated from our four analysed
standard stars are tabulated in Table 1. When the temperature
structure is included, the mass-loss rate is clearly most strongly
affected: from a great decrease at high temperatures (45 kK) to a
marginal gain at cooler temperatures (34 kK), and another high
declination for the case Teff = 32 kK (which can altogether be
explained by the reduction in the line-force parameter δ). For
modifications of the terminal velocities are directly linked with
the correction of the values for α, and they are again due to the
reduction of δ for the coolest case.

This procedure of calculating a stratified temperature was
made under the assumption that we can recover opacities and
emissivities from our m-CAK line-acceleration. In other words,
our implemented T (r) is not calculated by radiative trans-
fer and therefore will differ from a fully calculated temper-
ature structure. Because our synthetic spectra are determined
by FASTWIND, we can compare the stratificated temperature
that was used during the iterative procedure calculating our
self-consistent parameters and the temperature obtained with
opacities and emissivities calculated by radiative transfer. These
comparisons for two stars of our sample are shown in Fig. 3,
where we observe that differences in T (r) are ∼3 kK (except
for the external part of HD 210809). It might be argued that the
similarity in the results is forced because the two prescriptions
use the same boundary conditions (where T (r) = Teff for the
photosphere and T (r) = 0.4 Teff for the imposed external limit),
but even in this case, the replacement of our m-CAK tempera-
ture structure by the fully calculated by FASTWIND produces
only marginal variations in the self-consistent parameters with a
higher computational effort. Therefore, the prescription for the
stratification of temperature introduced in this work, which is
considered as a general approximation, quickly leads to more
reliable results than the case T (r) = Teff for our self-consistent
wind parameters.

2.3. Variance of line-force parameters

The range of validity for the self-consistent solutions from
Paper I was established for effective temperatures from 32 to
45 kK and for surface gravities with log g ≥ 3.4 because within
these limits, the uncertainties over the final wind parameters
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Fig. 2. Comparison of self-consistent fitting of the force multiplierM(t) between the implementation of the temperature structure (blue) and the
fixed temperature (red). Calculated line-force parameters (k, α, δ) are displayed in the same colour code. The shaded area represents the t optical
depth range where the force multiplier is defined within, from the sonic point outwards.

Table 1. Values for self-consistent (k, α, δ), Ṁ, and 3(r) when the temperature structure is included.

Teff log g k α δ Ṁ 3∞ log Ṁ
(kK) (10−6 M� yr−1) (km s−1)

45 4.0 0.135± .007 0.535± .005 0.020± .002 0.65 (−68%) 2 590± 130 (−25%) −6.187± .081
40 3.6 0.081± .003 0.634± .004 0.049± .002 2.9 (−56%) 2 410± 140 (−14%) −5.538± .053
34 3.6 0.082± .004 0.664± .004 0.093± .002 1.3 (+8%) 2 790± 160 (+2%) −5.886± .067
32 3.4 0.056± .002 0.684± .003 0.095± .001 0.69 (−43%) 2 080± 250 (+26%) −6.161± .051

Notes. Variations with respect to the self-consistent values tabulated by Gormaz-Matamala et al. (2019, Table 3), expressed in percentages for the
wind parameters, are listed in the parentheses. For a detailed explanation of the error bars, see Sect. 2.3.

resulting from the fitting of the line-force parameters were
smaller than the error bars derived from the observational uncer-
tainties of the stellar parameters. This was made on the basis of
a qualitative analysis of the behaviour of the force multipliers
M(t). We aim to complement this outline by including a quan-
titative measurement of the fit for the line-force parameters by
means of calculating their respective standard deviations. Here-
after, error bars associated with the wind parameter mass-loss
rate and terminal velocity come from the variation in (k, α, δ)
instead of from the variation in stellar parameters.

It is important to recall that these analyses over the error
bars come from the assumption that line-force parameters are

constant throughout the wind instead of a function of depth,
as has been proposed by authors such as Schaerer & Schmutz
(1994) and Kudritzki (2002). In other words, we can consider
k, α, and δ as constants only if their uncertainties lies below
the uncertainties found for the stellar parameters. This condi-
tion is satisfied for the range of temperatures we studied, where
logM(t) presents an almost linear shape as a function of log t
(see Fig. 2).

From Paper I, the uncertainties on the stellar parameters gen-
erated errors of ∼7−15% for terminal velocities and of ∼20% for
mass-loss rates (∼0.1 in logarithmical scale). Hence, we could
consider these values the threshold of the maximum permisible
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(red) or calculated by FASTWIND (blue).
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error on our models, with special emphasis on Ṁ. For this reason
as well, the values for the mass-loss rate and their uncertainties
are always given in logarithmical scale here.

The line-force parameters introduced in Table 1 are given
with errors, which come from the standard deviation for each
parameter when the fit is performed. Likewise, the terminal
velocities and the logarithm of the mass-loss rates contain error
bars that represent the new associated uncertainties for our self-
consistent wind parameters. These uncertainties do not come
only from the standard deviation of (k, α, δ), but also from the
discrepancies produced by numerical issues such as the selected
number of depth points when the equation of momentum (here-
after e.o.m., Eq. (1)) is calculated by HYDWIND (for details of
the numerical calculation of the e.o.m., see Curé 2004). This is
calculated by summing them quadratically,

∆wind =
√

∆2
(k,α,δ) + ∆2

Npoints
, (13)

with ∆(k,α,δ) and ∆Npoints being the error intervals either for 3∞ or
log Ṁ generated by the variation in line-force parameters and the
number of points, respectively.

For our selected four standard stars, self-consistent wind
parameters were calculated for a set of different numbers of
depth points from 200 to 900 (in intervals of 100), plus the max-
imum number of points allowed by the code (999). An increase
in the number of depth points results in a fine grid for the wind
structure, but implies higher time consumption. By normalising
these values by the terminal velocity and mass-loss rate under
the maximum N (3∞,999 and Ṁ999), the deviation generated for
the use of different number of points is illustrated better, as is
shown in Fig. 4. It is observed that only marginal discrepan-
cies are created for mass-loss rates of ∼0.03 in logarithmical
scale (below the threshold of 0.1 introduced above), whereas a
remarkable deviation for the terminal velocity appears for the
star with Teff = 32 kK and log g = 3.4. Therefore, uncertainties
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Table 2. Reformulation of the grid of wind solutions from KK17 (their Table 1), using their stellar parameters, but performing our own self-
consistent solutions for the line-force and wind parameters.

Model Teff log g R∗ k α δ 3∞ log Ṁsc log
(

Ṁsc

ṀVink

)
log

(
Ṁsc

ṀKK17

)
(K) (R�) (km s−1) (M� yr−1)

Main sequence (V)
325-V 32.5 3.92 7.4 0.015± .001 0.672± .005 0.032± .001 3330± 180 −8.222± .097 −0.855 −0.368
350-V 35.0 3.92 8.3 0.131± .006 0.607± .004 0.090± .002 2210± 120 −6.783± .096 0.137 0.636
375-V 37.5 3.92 9.4 0.169± .010 0.524± .005 0.046± .002 1980± 130 −6.816± .101 −0.293 0.143
400-V 40.0 3.92 10.7 0.162± .009 0.495± .006 0.015± .003 2040± 130 −6.732± .095 −0.595 −0.130
425-V 42.5 3.92 12.2 0.136± .007 0.519± .005 0.013± .002 2310± 130 −6.380± .090 −0.584 −0.034

Giants (III)
300-III 30.0 3.49 13.1 0.048± .001 0.684± .002 0.102± .001 2070± 220 −6.789± .111 0.007 0.419
325-III 32.5 3.53 13.4 0.065± .002 0.680± .003 0.100± .001 2100± 180 −6.385± .068 0.047 0.536
350-III 35.0 3.58 13.9 0.081± .003 0.661± .004 0.085± .002 2150± 140 −6.111± .066 −0.014 0.509
375-III 37.5 3.63 14.4 0.092± .004 0.637± .005 0.068± .002 2190± 140 −5.943± .070 −0.120 0.433
400-III 40.0 3.67 15.0 0.093± .004 0.615± .005 0.049± .002 2170± 130 −5.858± .069 −0.238 0.152
425-III 42.5 3.72 15.6 0.091± .003 0.595± .004 0.031± .002 2220± 130 −5.810± .060 −0.463 0.014

Supergiants (I)
325-I 32.5 3.30 21.4 0.054± .002 0.689± .003 0.092± .002 1910± 220 −5.887± .081 0.120 0.463
350-I 35.0 3.41 20.5 0.065± .002 0.674± .004 0.077± .002 2100± 200 −5.732± .068 0.038 0.512
375-I 37.5 3.52 19.8 0.077± .003 0.657± .004 0.065± .002 2280± 160 −5.606± .067 −0.174 0.315
400-I 40.0 3.63 19.1 0.084± .003 0.627± .004 0.046± .002 2430± 140 −5.629± .067 −0.301 0.115
425-I 42.5 3.75 18.5 0.096± .004 0.573± .005 0.023± .002 2470± 130 −5.779± .068 −0.527 −0.034

Notes. Differences in logarithm scale on mass-loss rate, compared with both formulae from Vink et al. (2001) and Krtička & Kubát (2017), are
included in the last two columns (see also Fig. 5).

over 3∞ increase considerably for lower values of the effective
temperature and surface gravity, which reach ∼12−13%, as is
shown in Table 1, near to the ∼15% previously measured from
the variation in stellar parameters. However, we emphasise that
these are partial trends, and more models are needed to generate
a definitive conclusion.

Including these error intervals allows us a more quantitative
analysis of the validity range of our self-consistent m-CAK pre-
scription. This gives us the chance to explore and evaluate the
existence of wind solutions beyond the rigid thresholds derived
in Paper I. Throughout this work, we scrutinise the presence or
absence of solutions for effective temperatures cooler than 32 kK
and surface gravities below 3.4.

2.4. Range of validity

Before we implement the synthetic spectra to fit observed spec-
tra, a quick evaluation of our self-consistent wind parameters
with respect to previous studies is necessary. Analogously to
Paper I, we compared our resulting self-consistent mass-loss
rates, Ṁsc with the theoretical values provided by the Monte
Calo procedure of Vink et al. (2000, 2001), and for this case, we
specifically include a comparison with the self-consistent wind
solutions for O-type stars calculated by KK17. We selected these
two studies because they present a surprisingly well-correlated
theoretical mass-loss rate, with the values from KK17 being
about three times lower (a difference of ∼0.5 in logarithmical
scale) than those given by the so-called Vink formulae.

For this purpose, we took the stellar parameters from the
sample introduced by KK17 and calculated our own self-
consistent wind solutions. The results are displayed in Table 2,
and we compare the different obtained mass-loss rates in Fig. 5.
Two stars with effective temperatures of 30 kK, 300-V and 300-I

Main Sequence

Giants

Supergiants

30 32 34 36 38 40 42

-7.5

-7.0

-6.5

-6.0

-5.5

Teff

lo
g
M

Fig. 5. Theoretical mass-loss rates tabulated in Table 2 for the values
predicted by Vink’s formula (orange symbols), by KK17 (green sym-
bols), and by this study (blue symbols). Main-sequence stars of the
sample are represented by starss, giants by triangles, and supergiants
by circles.

(see Table 1 from KK17), were not included in this compari-
son. The main-sequence star (300-V) was excluded because the
values of stellar radius (6.6 R�) and mass (12.9 M�) are too
to solve the e.o.m. by HYDWIND, and the supergiant (300-I)
was excluded because the low temperature and surface grav-
ity led to an unstable model without a unique self-consistent
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Table 3. Mercator-HERMES observations.

Star Oth. name Spec. type V (mag) No. exp. Exp. time (s) Obs. date

HD 57682 HR 2806 O9.2 IV 6.43 5 1800 20 Nov. 2012
HD 192639 BD+36 3958 O7.5 Iab 7.11 1 800 02 Jul. 2013
HD 188001 9 Sge O7.5 Iab 6.23 3 313 30 Sep. 2013
HD 218915 BD+52 3383 O9.2 Iab 7.20 1 2180 20 Aug. 2013
HD 210809 BD+51 3281 O9 Iab 7.56 1 1200 03 Nov. 2013
HD 195592 MWC 347 O9.7 Ia 7.08 1 1800 23 Aug. 2013

solution (for details, see Sect. 6.1). For the remaining stars,
it is interesting to note that high effective temperatures gener-
ate values for Ṁsc that agree more closely with those provided
by KK17, whereas (with the remarkable exception of 325-V,
the outlier of our sample) mass-loss rates from cooler tem-
peratures show a better correspondence with Vink’s formulae.
This unexpected trend is curious because first, our theoretical
self-consistent mass-loss rates differ from the good correlation
observed between ṀVink and ṀKK17, and second, it would be
possible to establish a smooth transition for theoretical Ṁ at
some point around Teff 32.5 kK and log g 3.5−3.3 for future
evolutionary tracks of massive stars if we were to change the
mass-loss prescription from self-consistent values to Vink’s
formulae (Gormaz-Matamala et al., in prep.).

3. Observational data

The selected sample is composed of a set of O supergiants
(HD 192639, 9 Sge, HD 218915, HD 210809 and HD 195592),
which are situated at the lower border of validity for effective
temperature and surface gravity as introduced in Sect. 2.4. Addi-
tionally, we included a star known by its magnetic field (HD
57682) in order to confirm the quality of a spectral fitting for
wind structures departing from spherically symmetry. For the
spectral data, the sample was chosen based on the high quality
of the signal-to-noise ratio (S/N) and for stars with compelling
evidence that they are single stars (i.e. excluding any possible
binarity).

3.1. HERMES spectra

The spectra were observed with the HERMES echelle spectro-
graph mounted on the Mercator 1.2 m telescope at the Roche de
los Muchachos Observatory, La Palma, Spain. HERMES (High
Efficiency and Resolution Mercator Echelle Spectrograph) is a
high-efficiency prism-cross-dispersed fibre-fed bench-mounted
spectrograph that observes the complete wavelength range
3800−9000 Å in a single exposure at a spectral resolution of
R = 85 000 (Raskin et al. 2011).

Each star was observed using the high-resolution fibre mode
in one to five exposures, depending on the V magnitude, in
succession throughout the same night (see Table 3). Additional
flat-field exposures were observed during the night to avoid
introducing systematic noise in the flux calibration process. The
spectra were calibrated with the latest version of the HERMES
pipeline (release v6.0) developed at the Royal Observatory of
Belgium and the University of Leuven, in collaboration with the
HERMES Consortium. The typical calibration steps were per-
formed, including spectral order tracing and extraction, average
flat-fielding, Th-Ar lamp wavelength calibration, and cosmic ray
removal using cross-order profiling.

Table 4. Lines included in FASTWIND, expressed in Å.

Hydrogen Helium

Hα 6563 He II 4200 He I 4387
Hβ 4861 He II 4541 He I 4471
Hγ 4340 He II 4686 He I 4713
Hδ 4101 He II 6527 He I 4922
Hε 3970 He II 6683 He I 6678

The calibrated exposures were co-added to produce a single
stacked 1D spectrum per star with an S/N of ∼150−250. The
S/N was estimated at four effective wavelengths (U, B, V , and R
bands). The typical uncertainty of the spectrograph wavelength
calibration is below ± 0.02 Å, or the HERMES wavelength scale
has a high accuracy.

3.2. Continuum normalisation

The raw exposures were calibrated with the removal of cosmic
rays for the final sum spectra. Dedicated software tools were
developed for BRASS (Lobel et al. 2019) to remove cosmic ray
flux spikes in HERMES spectra. Moreover, the spectral response
function of the instrument shows a strong wavelength depen-
dence and some time variability. However, spectra observed
with regular and smooth continuum flux shapes are required
to perform automated continuum normalisation calculations.
Consequently, all signatures of the instrumental response were
removed from the observed spectra. Advanced HERMES calibra-
tion pipeline algorithms were previously developed in BRASS to
determine the response correction curve at every point in time.

The method for modelling the instrumental response curve
is important to perform high-quality continuum flux normalisa-
tions, including in the small wavelength regions around selected
spectral lines. We automatically normalised the observed spectra
to the stellar continuum flux level using a special template nor-
malisation procedure. It searches for variable wavelength points
over sufficiently continuous flux regions close to the continuum
level in theoretical (template) spectra to fold the HERMES spec-
tra to these (continuum anchor) points. This ensures that local
flux normalisation effects are minimised, providing reliably nor-
malised spectra around the H and He lines we select for our
detailed line profile modelling.

4. Method

4.1. Selection of FASTWIND spectral lines

The group of 15 lines calculated by FASTWIND is presented in
Table 4.
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Fig. 6. Scheme of the self-consistent m-CAK procedure combined with FASTWIND, showing the stage at which the different initial parameters
(in rectangles) are set. Ellipses represent the processes or codes to be run, and the diamonds represent the outputs.

As a first stage, we decided to use only H and He lines for
the spectral fitting in the optical and infrared wavelength range
for practical purposes, whereas our observational data consist of
optical spectra alone.

4.2. Self-consistent modification of parameters

The scheme showing the steps required to achieve a self-
consistent synthetic spectrum is shown in Fig. 6. This procedure
is the same as we used to obtain the spectra for Paper I, but now
we go one step further: the spectral fit is improved by the fine-
tuning of the free parameters (represented as rectangles in the
figure) at the different stages of the process.

The upper half of Fig. 6 corresponds to the iterative process
that searches for the self-consistent solution under our m-CAK
prescription, therefore its only input parameters are the stellar
parameters (temperature, gravity, and abundances). When this
solution is achieved, that is, when line-force parameters converge
and theoretical values for the mass-loss rate, terminal veloc-
ity, and velocity profile are obtained, a synthetic spectrum is
computed by FASTWIND using the new velocity profile 3(r)
provided by the solution of (k, α, δ) as an input. As we previ-
ously stated in Paper I, a clumping description is introduced at
this point, together with the microturbulence 3turb. By clumping
description we mean not only fcl, but also the starting and end-
ing zones (rin and rout) in which the inhomogeneities are located.
This means that we use a clumping law in which fcl is constant
over a region of the wind that is delimited by rin and rout (see
Puls et al. 2006, for details). Finally, convolution for the resulting

synthetic spectrum requires inserting a value for rotational veloc-
ity 3rot and for macroturbulence 3macro as input. We therefore
observe that input parameters can be classified as first-order
(stellar parameters, whose modification implies a full restructur-
ing of the self-consistent wind solution), second-order (clumping
and turbulence, to recalculate the FASTWIND atmospheric
model but without modifying the self-consistent wind solution),
and third-order parameters (rotation and macroturbulence, to
reshape line profiles).

Although one of the advantages of developing synthetic
spectra derived from self-consistent wind prescription is that the
number of free parameters is reduced, the number of remain-
ing parameters that need to be fit freely is still large enough
to require a deeper evaluation of their effects upon the spectral
lines. After many empirical tests and comparisons in which only
one parameter was let free to vary while the others were held
fixed, combined with previous analyses found in the literature,
we observed some general trends that helped us to determine the
best model fit. We describe them below.

– The effective temperature Teff is fitted by the ratio between
the He II and the He I, given the expected change in ionisa-
tion. Because it is a first-order parameter, modifications of the
effective temperatures imply an alteration of the self-consistent
mass-loss rate (which are directly dependent), so that an increase
or decrease in Teff will also affect the intensity of the hydro-
gen lines, especially Hα. Moreover, the effective temperature
also provides information about the stellar radius, which is
constrained with the luminosity (i.e. observed magnitude) by
means of the Stefan-Boltzmann law. Therefore, modifications in
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Teff require modifications in R∗/R� for the models to maintain
coherence with the V magnitudes tabulated in Table 3.

– The surface gravity log g is evaluated by the absorption
intensity observed for Hβ, Hγ, Hδ, and Hε, together with the
absorption profiles of the He I lines. Because it also is a first-
order parameter, gravity presents an inverse proportionality with
the self-consistent mass-loss rate. As a consequence, its increase
implies a decrease in the potential emission component of Hα.

– The turbulent velocity 3turb, also known as microturbu-
lence velocity, is fitted to the H I lines. In concordance with
Villamariz & Herrero (2000), we observe that the effect of
3turb is only perceptible for hotter values of effective temper-
ature (in our case, Teff & 33 kK), primarily over the lines
He I λ4387 and He I λ4922.

– The clumping factor fcl is fitted to the hydrogen lines,
in particular, it fits the wings of Hα. As was pointed out by
Repolust et al. (2004), clumping effects over the wings of Hα
are more prominent when they are in emission than in absorp-
tion. In addition, we observe an effect over the core and the red
wing over the line profiles of Hβ, Hγ, Hδ, and Hε as a function of
the wavelength. Here, we follow the same notation as we used in
Paper I that was taken from Puls et al. (2006), where the clump-
ing factor in FASTWIND is denoted as fcl and takes values ≥1
(where fcl = 1 is the value for the smooth limit). This fcl is then
the inverse of the volume filling factor, denoted in CMFGEN as
f∞ (Bouret et al. 2012; Gormaz-Matamala et al. 2021). This scale
fcl = 1/ f∞ relies on the assumption that the inter-clump medium
is empty (Sundqvist & Puls 2018).

– The macroturbulent velocity 3macro, which corresponds
to the non-rotational contributions to the line broadening (see
Simón-Díaz & Herrero 2014), is fitted to the width of He I lines,
which have been empirically shown to be more sensitive to this
broadening.

– The rotational velocity 3rot is fitted to the slope in the shape
of the wings of He II λ4200 and He II λ4541. For this purpose,
the synthetic spectrum needs to be convolved after the end of the
FASTWIND process. Moreover, we decided to make this con-
volution coherent with the effects of the Ω parameter over the
self-consistent wind hydrodynamics,

Ω =
3rot

3crit
, (14)

where 3crit is the critical rotational speed for a spherical star (see
e.g. Araya et al. 2017, for details). The rotational velocity is a
third-order parameter, but Ω is a first-order parameter, which
means that modifications in the convolution may require a com-
plete restructuring of the self-consistent solution. Because we
focus on the theoretical performance of synthetic spectra and
because the focus is not on rapidly rotating stars, we prefer to
denote rotational velocity simply as 3rot instead of the classical
3 sin i. The convolution to broaden the spectral lines by rotational
effects and the inclusion of the Ω factor over the hydrodynamic
solution are both assumed to happen in the line of sight to the
observer.

As a final remark, we mention that the radial velocity, 3rad, is
obtained from the SIMBAD database1.

5. Spectral results

In this section we present the results of the spectral analysis
for the six stars of the sample, HD 192639, 9 Sge, HD 57682,

1 http://simbad.u-strasbg.fr/simbad/

HD 218915, HD 195592, and HD 210809. For each of them,
we present the best spectral fit (based on the trends introduced
in Sect. 4.2) and a tabulation with the final stellar, wind, and
line-force parameters found for these stars. An analysis and com-
parison of some of these new parameters with the literature,
especially for the case of the mass-loss rate, are also considered.

The spectra were fit with a by-eye inspection that searched
for the model that globally satisfied all the criteria described
above better. We selected this option instead of a χ2 reduction
or an algorithm procedure (e.g. Mokiem et al. 2005) because an
inspection by eye allows a more qualitative discussion of the fits.
Of the 15 lines introduced in Table 4, the focus is mostly given
to the fit of the wings for the set of hydrogen lines and to the
emission peak of Hα. For helium, good-quality fits are expected
for all the lines, except for He II λ4686 and He I λ6678, whose
appropriate synthetic reproduction has been a challenge for the
codes FASTWIND and CMFGEN (Puls et al. 2005; Holgado
et al. 2018). The short execution time of the combined m-CAK
procedure with FASTWIND (Fig. 6), which takes about one
hour, allows developing multiple self-consistent wind solutions
and then calculating the best model fit is quickly achieved with
∼30 model runs.

Same as for Tables 1 and 2, the self-consistent wind param-
eters introduced in this section are presented with the error bars
derived from the uncertainties of the line-force fitting and those
derived from differences in the numbers of depth points used for
the wind structure, as outlined in Sect. 2.3. Variance in the wind
parameters due to uncertainties in the fitted stellar parameters
(Teff, log g, He/H, etc.), which is a priori assumed to be about
±0.125 for log Ṁ, is not included in these error bars.

5.1. HD 192639

The first star we analysed was the blue supergiant O7.5 I,
HD 192639, observed with HERMES in 2013. This star was pre-
viously studied by Bouret et al. (2012), who fitted a CMFGEN
synthetic spectra with parameters Teff = 33.5 kK, log g = 3.42,
log Ṁ = −5.68, and β = 1.3. We used these parameter as a start-
ing point to perform our calculations instead of those derived
from the calibrations by Martins et al. (2005) for a standard O
7.5 I star (Teff = 32 kK and log g = 3.36), which differ moder-
ately, but still agree closely. The stellar parameters we derived
are tabulated in Table 5 and also lie close to their previous values.
The synthetic spectra are shown in Fig. 7.

The initial rotational velocity for HD 192639 is slightly
increased from 3rot = 90 km s−1 given by Bouret et al. (2012) to
100 km s−1. This rotational velocity corresponds to an angular
velocity of Ω = 0.26, which has a real impact on the gen-
erated velocity profile and on the line profiles, making them
broader. This additional rotational broadening, which comes not
only from the final convolution over the spectra, but also from
the self-consistent solution, can partly replace the macrotur-
bulent velocity, which is set to 3macro = 30 km s−1 instead of
the 43 km s−1 given by Bouret et al. (2012). Another important
upgrade: the self-consistent solution provides a higher effective
temperature than the initial value, whereas the surface gravity
is ∼10% lower. The final difference with the CMFGEN fit is our
reduction of the He to H ratio from 0.15 to 0.1, which is necessary
to reduce the intensity of all helium lines.

The spectral fit we achieved shows a good match and is
particularly good for the emission component of Hα, and with
the remarkable exception of He II λ 4686 and its inherent
variability, the match is of the same order of accuracy as
Bouret et al. (2012, see their Fig. A.16). Despite the mentioned
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Fig. 7. Best fit for HD 192639 with the self-consistent solution tabulated in Table 5.

Table 5. Summary of the stellar and wind parameters we used to fit
HD 192639 (Fig. 7).

Parameters HD 192639

Teff (kK) 34.0
log g 3.25

R∗/R� 19.8
M∗/M� 25.4
L∗/L� 4.73× 105

[He/H] 0.10
(k, α, δ)sc (0.047, 0.694, 0.089)

Ω 0.26
log Ṁ (M� yr−1) −5.783± .090
3∞ (km s−1) 1 460± 160

fcl 6.25
3rad (km s−1) 20
3rot (km s−1) 100
3turb (km s−1) 10
3macro (km s−1) 30

log Dmom 28.83

variability, this fit gives us confidence for the self-consistent
value we found for the mass-loss rate, log Ṁ = −5.783. This is
just ∼38% higher (+0.14 dex in logarithmical scale) than the
value found by Bouret et al. (2012), but we used a clumping
factor that is 3.2 times lower.

5.2. 9 Sge

9 Sge (HD 188001) is a runaway star (Underhill & Matthews
1995) with a spectral type of O 7.5 Iab (Sota et al. 2011). Do not
confuse 9 Sge (from the Sagitta constellation) with 9 Sgr (from
the Sagittarius constellation). This latter one is also an O starm
but belongs to the main sequence spectral type O 3.5 V (Sota
et al. 2014). 9 Sge exhibits a periodic variation in its radial veloc-
ity of P = 97.6 days, but it is still debated whether this period
is produced by the presence of a companion (Maíz Apellániz
et al. 2019). Based on its spectral classification, the initial stel-
lar parameters taken from the catalogue of Martins et al. (2005)
are: Teff = 34, log g = 3.36 and R∗ = 20.8 R�, which are also the
parameters provided by the VizieR Online Data Catalog2 (Nebot
Gómez-Morán & Oskinova 2018). Alternatively, Martins et al.
(2015a) found Teff = 33, log g = 3.35. The fitted parameters and
the spectrum are presented in Table 6 and Fig. 8 respectively.

To achieve a closer agreement for the helium lines, it
was necessary to increase the He to H ratio from the solar
standard from Asplund et al. (2009, He/H = 0.085) up to
He/H = 0.125. Moreover, wide shape of the line profiles led
us to require an increase in both macro-turbulence (25 km s−1)
and rotational velocity (90 km s−1), together with perform
wind solutions with a lower gravity. Same as for the case of
HD 192639, Hα is fitted by its wings and by the emission
component, whereas the absorption is only partially reproduced.

2 http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=
J/A+A/620/A89
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Fig. 8. Best fit for 9 Sge with the self-consistent solution tabulated in Table 6.

Table 6. Summary of the stellar and wind parameters we used to fit
9 Sge (Fig. 8).

Parameters 9 Sge

Teff (kK) 34.5
log g 3.32

R∗/R� 23.0
M∗/M� 40.3
L∗/L� 6.76× 105

[He/H] 0.125
(k, α, δ)sc (0.057, 0.685, 0.075)

Ω 0.21
log Ṁsc (M� yr−1) −5.632± .073
3∞ (km s−1) 2 000± 190

fcl 16.0
3rad (km s−1) 43
3rot (km s−1) 90
3turb (km s−1) 20
3macro (km s−1) 25

log Dmom 29.14

The self-consistent mass-loss rate obtained is 2.33×
10−6 M� yr−1, roughly ∼1.8 times higher than valued provide by
Nebot Gómez-Morán & Oskinova (2018).

5.3. HD 57682

We modelled the wind of the O9 star HD 57682, which is the
only non O-supergiant star of our HERMES sample. It was orig-
inally classified as luminosity-class IV by Walborn (1972), but
reclassified as main sequence (luminosity-class V) by Grunhut
et al. (2012). The study of Grunhut et al. (2009) found line profile
variability (LPV) due to a magnetic field B ∼ 1600 G. Despite
this high value for B, these studies have successfully achieved
accurate spectral fittings using the spherically symmetric code
CMFGEN. Based on this study, we started with the following
stellar parameters: Teff = 35 kK, log g = 4.0, and R∗ = 7 R�. In
this particular case, the self-consistent solution obtained from
this set of stellar parameters quickly leads to a good fit after lit-
tle tuning of the effective temperature and surface gravity. The
spectrum is presented in Fig. 9, and the obtained parameters are
shown in Table 7.

Grunhut et al. (2012) found that the most prominent LPV
for HD 57682 is observed for Hα, where a strong emission peak
in the core of the line arises. Moreover, the circumstellar mate-
rial surrounding the star also contaminates the core of the other
hydrogen lines such as Hγ (Grunhut et al. 2009, see their Fig. 2).
For the case of helium lines, we derive a slight increase in the
effective temperature of (500 K) and an also slight decrease in
surface gravity (0.1 dex), which helps to improve the fit for He I
lines in particular (He I λ4471, probably because of its variable
behaviour).
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Fig. 9. Best fit for HD 57682 with the self-consistent solution tabulated in Table 7.

Table 7. Summary of the stellar and wind parameters we used to fit
HD 57682 (Fig. 9).

Parameters HD 57682

Teff (kK) 35.5
log g 3.85

R∗/R� 7.0
M∗/M� 12.7
L∗/L� 7.02× 104

[He/H] 0.085
Ω 0.02

(k, α, δ)sc (0.117, 0.629, 0.092)
log Ṁsc (M� yr−1) −6.759± .085
3sc,∞ (km s−1) 2 020± 120

fcl 2.5
3rad (km s−1) 20
3rot (km s−1) 15
3turb (km s−1) 20
3macro (km s−1) 20

log Dmom 27.75

For the mass-loss rate, Grunhut et al. (2009) determined
a value of log Ṁ = −8.85 from the C IV lines λ1548 and
λ1551, but they stated that the mass-loss rate derived from the

emission component of Hα should be ∼10−7 solar masses per
year. The peculiar emission profiles for Hαwere later reproduced
in some detail by Grunhut et al. (2012, see their Fig. 15), based
on the magnetohydrodynamic (MHD) simulations performed by
Sundqvist et al. (2012), where the mass-loss rate was readapted
to log Ṁ ∼ −7.73. This means that the emission component of
HD 57682 is only reproduced in 2D models. It is important to
note that these values from previous authors were all calculated
assuming a β-law for the wind velocity profile using the code
CMFGEN (Hillier 1990a; Hillier & Miller 1998). In contrast,
the theoretical mass-loss rate (log Ṁsc = −6.759) we derived is
able to fit the wings of Hα down to ∼±100 km s−1 along the line
core, even though it is ∼120 times higher than the initially estab-
lished value. This shows the difference between velocity profiles
that are calculated hydrodynamically with radiative acceleration
and β-law profiles, although it would be necessary to perform
self-consistent MHD calculations to study the full shape of Hα
in magnetic stars such as HD 57682 in more detail in the future.

Finally, we also mention the issue of the macroturbulence.
For their CMFGEN models, Grunhut et al. (2009) adopted a
value of 3macro = 40 km s−1, whereas in Grunhut et al. (2017)
the authors adopted an even higher value of 65 km s−1. For
our spectra, we fit the wings of He I lines using a lower value
for the macroturbulence of 3macro = 20 km s−1, which does not
dispose any overestimation of the rotational velocity (we found
3rot = 15 km s−1, which is of the same magnitude order as the
13 km s−1 from Grunhut et al. 2012).
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Fig. 10. Best fit for HD 218915 with the self-consistent solution tabulated in Table 8.

5.4. HD 218915

HD 218915 is a blue supergiant that was classified as O 9.5 Iab
by Petit et al. (2019), and as O 9.2 Iab by Martins (2018). Like
9 Sge, HD 218915 is a runaway star with a periodicity in its radial
velocity of P = 0.89 days (Barannikov 2006). From Leitherer
(1988), we can obtain the following parameters to set our ini-
tial calculations: M∗ = 45 M�, R∗ = 26 R� and log L∗/L� = 5.62,
whereas the study performed by Holgado et al. (2018) provides
Teff = 31.1 kK and log g = 3.21. The final parameters we calcu-
lated for the self-consistent solution are tabulated in Table 8, and
the spectral fit is shown in Fig. 10.

The most prominent aspect to be noted from the new
parameters we derived from our self-consistent procedure is
the apparent reduction of the He to H ratio to 0.07: this is
∼18% below the new ratio established by solar metallicity by
Asplund et al. (2009). This is a remarkable situation because it
is commonly assumed that Galactic stars are born with solar
metallicity, and the abundance of helium in their surface and
wind will only be enhanced through their evolutionary tracks
due to nucleosynthesis (Ekström et al. 2012; Gormaz-Matamala
et al., in prep.), implying therefore that HD 218915 might
have been born with a peculiarly low He/H ratio. Neverthe-
less, this modification was absolutely necessary to fit the faint
absorption profiles of the helium lines, as the decrement on
surface was saturating the lines. This was confirmed after we
ran several models to scan the entire parameter space (includ-
ing 3turb). An alternative explanation for the depleted helium

Table 8. Summary of the stellar and wind parameters we used to fit
HD 218915 (Fig. 10).

Parameters HD 218915

Teff (kK) 31.0
log g 3.23

R∗/R� 18.0
M∗/M� 20.1
L∗/L� 2.7× 105

[He/H] 0.07
Ω 0.2

(k, α, δ)sc (0.057, 0.690, 0.124)
log Ṁsc (M� yr−1) −6.015± .106
3sc,∞ (km s−1) 1 390± 200

fcl 1.67
3rad (km s−1) −95
3rot (km s−1) 80
3turb (km s−1) 20
3macro (km s−1) 15

log Dmom 28.55

of HD 218915 is binarity: the line might become diluted by
the light of a potential companion. However, because this is
a runaway star, this hypothesis does not seem to apply in
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this particular case. The implications of this behaviour deserve
a particular study, which is beyond the scope of this work.
Regarding other stellar parameters, both Teff and log g lie below
the threshold rigidly stated in Paper I (same as the supergiant
325-I from Table 2), but even so, an adequate spectral fit for the
star was achieved, therefore we can establish self-consistent wind
solutions under m-CAK prescription remain a valid framework
for effective temperatures and surface gravities below 32 kK
and 3.4.

Similarly as HD 57682, HD 218915 exhibits an emission
component in Hα. This might be an indication for the exis-
tence of circumstellar material surrounding the star, again due
to magnetic activity. However, studies from Grunhut et al. (2017)
and Petit et al. (2019) did not find evidence of a strong mag-
netic field for HD 218915, so that the origin of this additional
emission component in Hα remains unclear. This additional
component has not been reproduced before, even using a β-law
(Holgado et al. 2018). Therefore, its origin can be attributed to
the variability of the star. Although it has been possible to accu-
rately reproduce an Hα emission component in another O9.5 I
star using synthetic spectra (see e.g. the case of HD 188209 in
Martins et al. 2015b), this was achieved using an extremely high
value of β = 2.2 for the velocity profile (far from the β = 0.8−1.2
used by Holgado et al. 2018). In the case of HD 188209, the
rotational velocity was also lower (3 sin i = 45 km s−1). Because
Hβ and Hγ also show a weak additional component at the core,
the wing profiles of these Balmer lines were fitted. The self-
consistent mass-loss rate, log Ṁsc = −6.015 agrees surprisingly
well with the value provided by Leitherer (1988). This might
partly be attributed to the reduction of the stellar radius made
by us from 26 down to 18 R�, which is crucial to reduce the
intensity of He I lines. The broadness of He I profiles also was
satisfied by increasing the rotational velocity up to 80 km s−1,
in contrast with the 60 km s−1 reported by previous studies
(Leitherer 1988; Grunhut et al. 2017; Petit et al. 2019) and espe-
cially assuming a macroturbulence of 15 km s−1, far below the
94 km s−1 reported by Grunhut et al. (2017).

5.5. HD 195592

HD 195592 is another runaway star, classified as O 9.7 Ia (Sota
et al. 2011). It presents evidence of being a binary system, which
can explain the line profile variations (LPV) observed for the
spectrum (De Becker et al. 2010). The initial mass M∗ = 30 M�,
radius R∗ = 30 M�, and luminosity L∗ = 3.1× 105 L� were taken
from De Becker et al. (2010), who derived them from Martins
et al. (2005) given its spectral classification for the closest sub-
type to HD 195592 (O 9.5 I). We derived our initial parameters
also from that calibration, while the final values are tabulated in
Table 9 and the synthetic spectra are shown in Fig. 11.

The search for a self-consistent solution for this star led us to
find the most extreme parameters of our sample: Teff = 29.5 kK
and log g = 3.2. To achieve this result, it was necessary to
increase the number of points for our stratificated hydrodynamic
solution to 999 to avoid crashes and false convergences. We
call a false convergence the finding of different sets of (k, α, δ)
given different initial values (k0, α0, δ0). This situation violates
the basic principle of uniqueness for a self-consistent solu-
tion: one and only one set of line-force parameters satisfies the
e.o.m and recovers the same line-acceleration (see Fig. 2 from
Gormaz-Matamala et al. 2019). As we showed in Fig. 4, the
selection of the number of points produces significant variations
in the resulting wind solution when effective temperature and
surface gravity take too low values. Although this discrepancy

Table 9. Summary of the stellar and wind parameters we used to fit HD
218915 (Fig. 11).

Parameters HD 195592

Teff (kK) 29.5
log g 3.20

R∗/R� 21.5
M∗/M� 26.7
L∗/L� 3.16× 105

[He/H] 0.095
Ω 0.15

(k, α, δ)sc (0.128, 0.670, 0.180)
log Ṁsc (M� yr−1) −5.369± .557
3sc,∞ (km s−1) 1 390± 120

fcl 1.0
3rad (km s−1) −5
3rot (km s−1) 60
3turb (km s−1) 10
3macro (km s−1) 25

log Dmom 29.18

was observed more over the terminal velocity than over the mass-
loss rate, it is evident that the resulting hydrodynamics have an
impact on the future synthetic spectra to be generated, which can
create a false positive depending on the topology of the solution
(Curé & Rial 2007). A deeper analysis is required for a better
understanding of the reasons for this exotic behaviour, but this is
beyond the scope of this study (see the discussion in Sect. 6.1).
The importance of this situation is that the applicability of the
m-CAK self-consistent wind prescription is less confident for
effective temperatures below 30 kK, and therefore this value
could be reconsidered as a new threshold for the recipe. This
hypothesis is reinforced by the fit obtained for Hα, where we
can infer that the self-consistent velocity profile for a wind solu-
tion with a cool temperature of Teff = 29.5 kK is not adequate to
shape the wings and core of the line. Marcolino et al. (2017)
provided an even lower effective temperature (Teff = 28 kK)
and a lower surface gravity (log g = 2.9), which confirms that
HD 195592 lies outside the range where m-CAK self-consistent
solutions can currently be found. In any case, an emission in Hα
is at least predicted, and the mass-loss rate provided by Ṁ

√
fcl is

relatively close to the homogeneous value provided by Marcolino
et al. (2017, log Ṁhom = −5.14).

5.6. HD 210809

The last star of our sample is HD 210809, another blue super-
giant, classified as O 9 Ia (Sota et al. 2011). According to this,
the stellar parameters in the catalog of Martins et al. (2005) are
31.3 kK for the effective temperature, 3.23 for log g, and 21.76
for the stellar radius, but the survey of Petit et al. (2019) provided
a value of R∗ = 15.2 R�. Final parameters calculated for the self-
consistent solution are tabulated in Table 10, whereas spectral fit
is shown in Fig. 12.

The rotational velocity was assumed to be 100 km s−1

(Grunhut et al. 2017). This makes HD 210809, together with
HD 192639, the fastest rotators of our sample. This is also clear
in the P Cygni profile observed for the Hα line in both stars.
Hence the fit of Hα is focused on the emission component, as
for the HD 192639 case (Fig. 7). Although we do not reproduce
the absorption component of Hα, the accurate fit achieved for the
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Fig. 11. Best fit for HD 195592 with the self-consistent solution tabulated in Table 9.

Table 10. Summary of the stellar and wind parameters we used to fit
HD 210809 (Fig. 12).

Parameters HD 210809

Teff (kK) 31.5
log g 3.20

R∗/R� 22.0
M∗/M� 28.0
L∗/L� 4.3× 105

[He/H] 0.10
Ω 0.2

(k, α, δ)sc (0.068, 0.688, 0.141)
log Ṁsc (M� yr−1) −5.593± .207
3sc,∞ (km s−1) 1 340± 120

fcl 2.2
3rad (km s−1) −70
3rot (km s−1) 100
3turb (km s−1) 20
3macro (km s−1) 25

log Dmom 28.98

rest of the Balmer series makes us confident about the solution
found for HD 210809.

The self-consistent value for mass-loss rate found for
HD 210809, Ṁ = 2.55× 10−6 M� yr−1, is ∼30% lower than the

value of log Ṁ = −5.44 from Fullerton et al. (2006), but it agrees
with the theoretical value from the usage of the Vink formulae
with the stellar parameters tabulated in Table 10 (ṀVink = 2.5×
10−6 M� yr−1). On the other hand, KK17 provided a theoreti-
cal value of ṀKK17 = 1.9× 10−7 M� yr−1. Therefore, as shown
in Table 2, the m-CAK self-consistent mass-loss closely agrees
with Vink’s formula for the cases of Teff ∼ 32 kK.

6. Discussion

6.1. Multiple self-consistent solution and saturation

As we pointed out in Fig. 4, the self-consistent solutions for
line-force parameters depend on the number of depth points,
which produce variations in the resulting wind parameters to
be calculated. These variations look more profound for the
case of low temperatures, where our standard model of Teff =
32 kK and log g = 3.4 showed large uncertainties in the resulting
self-consistent terminal velocity.

This erratic behaviour is also expressed in the uncertainty
for the self-consistent mass-loss rates (our most important wind
parameter) when the effective temperature and the surface grav-
ity decreases the threshold imposed in Paper I. These uncertain-
ties are expressed in the error bars associated with the derived
self-consistent Ṁ, due to a larger contribution of the term ∆2

Npoints

in Eq. (13), which are now in the order of the errors assumed
to be produced by uncertainties in the stellar parameters such as
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Fig. 12. Best fit for HD 210809 with the self-consistent solution tabulated in Table 10.

Table 11. Line-force parameters calculated for the O 9.7 I star HD 195592 (see Sect. 5.5), given different numbers of depth points and different
sets of effective temperature and surface gravity.

HD 195592 (false solutions)
(k, α, δ)sc

Teff log g No depth points
(kK) 200 500 999

29.5 3.2 (0.059, 0.695, 0.127) (0.065, 0.683, 0.135) (0.128, 0.670, 0.180)
(0.078, 0.692, 0.147)
(0.108, 0.690, 0.170)

30.0 3.2 (0.060, 0.684, 0.127) (0.096, 0.682, 0.155) (0.135, 0.683, 0.190)
(0.118, 0.685, 0.186)

30.5 3.2 (0.144, 0.704, 0.195) (0.145, 0.703, 0.194) (0.149, 0.701, 0.193)

29.5 3.22 (0.048, 0.685, 0.106) (0.054, 0.684, 0.116) (0.119, 0.667, 0.173)

in the case of HD 218915 (Sect. 5.4, see also the considerations
incorporated in Sect. 2.3).

However, as we previously pointed out for the analysis of
the star HD 195592 (Sect. 5.5), a decrement in the temperature
not only produced a broadening in the error bar for the mass-loss
rate, but also a problem in finding a unique solution for any num-
ber of depth points implemented. These are the so-called false
convergences, and they are better illustrated in Table 11, where
we present different sets of self-consistent line-force parameters

(k, α, δ) given different numbers of depth points. When we use
Teff ≤ 30 kK and log g = 3.2, we observe more than one solution
for the case of the lower number of points (200). This situa-
tion does not appear with a larger grid for the wind structure.
Even though false solutions disappear when the number of depth
points is increased, however, we still observe a huge discrep-
ancy between the sets of (k, α, δ) calculated, which makes the
error bar in these cases ∼0.5 (such as for HD 195592). A more
detailed analysis of the coupling of the line-acceleration and the
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Table 12. Line-force parameters calculated for the O 9 Ia star
HD 210809 (see Sect. 5.6), given different numbers of depth points and
different sets of effective temperature and surface gravity.

HD 210809 (saturated solutions)
(k, α, δ)sc

No depth points
Ω 200 300

0.25 (0.068, 0.688, 0.141) (0.126, 0.716, 0.204)
0.23 (0.068, 0.689, 0.142) (0.126, 0.716, 0.204)
0.21 (0.066, 0.689, 0.140) (0.125, 0.716, 0.204)
0.20 (0.065, 0.689, 0.137) (0.070, 0.687, 0.143)
0.0 (0.055, 0.693, 0.115) (0.057, 0.689, 0.118)

topology of hydrodynamics is required to understand the phe-
nomenon that is generated for temperatures <30 kK, but this is
beyond the scope of this work. At this point, we can state that
the discrepancies in the resulting self-consistent wind parame-
ters cause us to set our threshold of the validity for our m-CAK
self-consistent prescription at Teff = 30 kK and log g = 3.2.

Another important case to consider is HD 210809 (Sect. 5.6).
The effective temperature is above our threshold of 30 kK, but
we still found huge divergences in the self-consistent solutions
when we modified the number of depth points. Particularly for
HD 210809, we find that these large differences appear when
the rotation velocity reaches the value Ω = 0.2. This is better
displayed in Table 12, where below this value, variations in the
line-force parameters lie within the normal discrepancies due to
the selection of different number of depth points; but above this
limit, every set of self-consistent k, α, and δ changes dramati-
cally. Moreover, for Ω > 0.2, increasing the number of the depth
points always produces the same self-consistent solution where
the δ parameter reaches the value of 0.204, which makes it closer
to the so-called ‘delta-slow solutions’ (Curé et al. 2011; Venero
et al. 2016; Araya et al. 2021). We call this a ‘saturated’ solu-
tion because it is independent of the initial value for Ω > 0.2
and because the resulting wind solution (with a mass-loss rate of
Ṁ ' 1.4× 10−5 M� yr−1) cannot generate a synthetic spectrum.
Therefore, analogously to the previous case of HD 195592, we
found a region in the set of initial stellar parameters in which the
self-consistent m-CAK prescription presents problems to pro-
vide a unique well-converged solution, this time related with a
high rotational velocity. However, given that HD 210809 is not
our fastest rotator of the sample (the fastest is HD 192639 with
Ω = 0.26, see Table 5), we guess that its low effective temper-
ature (Teff = 31.5) might act as another threshold for the cases
when the rotational velocity becomes significant. In a forth-
coming paper, we expect to explore the effects of the rotational
velocity on the resulting self-consistent solutions with effective
temperatures below 32 kK in more detail. Hence, we consider
that for stars with Ω > 0.2, the range of validity of our m-CAK
prescription is restricted to Teff & 31.5 kK.

Nevertheless, despite the false convergence and saturation
discussed in this section, we rely on the final parameters intro-
duced for HD 195592 and HD 210809 in Tables 9 and 10, respec-
tively. They represent the best global spectral fit we achieved for
each star, as shown in Figs. 11 and 12.

6.2. Limits of the self-consistent m-CAK prescription and the
issue of clumping

The work introduced in Paper I has provided a grid of wind
solutions to self-consistently calculate the line-force parameters

for the line-acceleration with hydrodynamics. Because line-force
parameters come from the m-CAK framework, these wind solu-
tions are calculated following the formal assumptions of the the-
ory such as the Sobolev approximation, and neglect the detailed
influence of multi-scattering effects. Despite these issues, the m-
CAK prescription from Paper I has been shown to provide values
for Ṁ in agreement with homogeneous mass-loss rates derived
from observations (Bouret et al. 2005; Markova et al. 2018),
in addition to the calculation of reliable synthetic spectra to fit
clumped stellar winds (see Sect. 6.2 from Gormaz-Matamala
et al. 2019). Now, the inclusion of a stratified temperature for
the stellar wind, based on the prescription used by Sundqvist
et al. (2019) and Lucy (1971), has led to a decrement in the self-
consistent values for the mass-loss rate, particularly for effective
temperatures of Teff ∼ 40 kK or higher, mostly because of
the decrement in the line-force parameter k. Decrements in Ṁ,
however, still agree with theoretical values presented by other
self-consistent studies such as KK17 (Krtička & Kubát 2017), as
shown in Table 2. On the one hand, this would be expectable
if we were to consider that both studies used flux fields from
TLUSTY (Hubeny & Lanz 1995). On the other hand, the fact
that the results are close, even considering that these authors
calculated their line-acceleration from CMF radiative transfer
equations (whereas we calculate the line-force parameters), may
suggest that some of the drawbacks commonly attributed to the
m-CAK framework (such as line-blanketing and multi-scattering
effects, see Puls 1987) are not relevant when self-consistent cal-
culations are implemented (at least in the range of temperatures
we study), as was previously argued in Gormaz-Matamala et al.
(2019, Sect. 2).

Moreover, regardless of the differences with Paper I, the
implementation of the temperature structure T (r) shows success-
ful spectral fittings with our sample of stars, as was demonstrated
in Sect. 5. This could be discussed in favour of the correctness
of the self-consistent values for Ṁ presented in this work, but in
this case, we would also require a proper theoretical determina-
tion of the clumping factor for each model. It has been shown
that the implementation of different clumping factors leads to
different line-accelerations, which in turn will lead to a dif-
ferent self-consistent solution for the wind (Gormaz-Matamala
et al. 2021). Including these effects on the calculated gline from
the line-force parameters would require a meticulous description
of the inhomogeneities through the wind structure, such as the
3D Monte-Carlo calculations developed by Šurlan et al. (2012,
2013). However, these calculations also use a β-law prescription
for their velocity profiles, so that a new iterative procedure would
be required to couple the two calculations and then to obtain a
self-consistent clumping description and 3(r). We expect to move
in this direction in a forthcoming study, but this is currently
beyond of the scope of this work.

Even when a fully consistent calculation of every parameter
of the stellar wind is the most desirable scenario and the final
goal of every theoretical prescription, in practice, this achieve-
ment cannot be reached. The spectral fits we presented and
their respective self-consistent wind parameters Ṁsc and 3∞,sc
were made on the basis that the fitted stellar parameters are
correct, especially because the error bars associated with each
wind parameter do not consider the uncertainties of temperature,
mass, radius, or abundances. This is the price to pay for reduc-
ing the number of free parameters for the spectral fit. Therefore,
we do not claim that our predicted mass-loss rate and terminal
velocity are ‘the truth’, but we state that our prescription leads to
reliable theoretical wind parameters that can adequately repro-
duce (despite particular exceptions such as the Hα profile of
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Fig. 13. Comparison of the best fits for 9 Sge (left-panel) and HD 210809 (right-panel), with the self-consistent solution introduced in Fig. 8 for
9 Sge in Fig. 12 for HD 210809 (red) and with the improved fits individualised for Hα (blue).

HD 218915) spectral observations and agree with other studies.
Based on these results, self-consistent m-CAK wind solutions
show a promising perspective for the theoretical determination
of mass-loss rates, and hence we are confident in the potential of
this prescription in the future.

6.3. Accuracy of spectral fitting

In Sect. 5 we introduced a set of stellar and wind parameters
to simultaneously fit a sample of optical spectra observed with
the HERMES spectrograph. The fit was achieved by eye, and our
main criterion was the global accuracy for the lines tabulated in
Table 4. However, despite our general focus on providing accu-
rate fits for most of the listed lines (mainly the photospheric
lines), the quality the fits achieved for some of the Hα profiles
in our sample might not be considered satisfactory.

Improved fits for the Hα lines of 9 Sge and HD 210809 are
shown in Fig. 13. For the case of 9 Sge, we can improve the
fit of Hα if we increment the turbulence velocity to 40 km s−1

and reduce the rotational velocity to 50 km s−1. In addition,
the macroturbulence needs to be decreased to 4 km s−1 in
order to properly reproduce the sharpness of the Hα profile.
This improvement produces a sharper emission component, even
when it was not possible to reproduce the absorption portion of
the P-Cygni profile of the line. For the case of HD 210809, a
more accurate fit is achieved also by setting 3turb = 40 km s−1,
decreasing 3macro = 2 km s−1 and increasing the rotational veloc-
ity to 3rot = 170 km s−1. In this case, the absorption and emission
components of the line are accurately reproduced, but these new
modifications do not fit the other spectral lines.

Therefore, the fits introduced in Sect. 5 are the best global
fits provided by our method when we aim to obtain a simulta-
neous fit for the visible range of the spectra rather than focus
only on one single line such as Hα. Studies focused on the self-
consistent description of the wind either do not provide a spectral
fit (Krtička & Kubát 2017; Björklund et al. 2021) or the presented

spectral fits do not allow a flexible fine-tuning (Sander et al.
2017). The reason for this dichotomy is, as stated in Gormaz-
Matamala et al. (2021), that a perfect fully self-consistent wind
prescription must consider every feature present in the wind (e.g.
the clumping prescription and even effects from X-rays), which
is beyond the scope of this work. In the case of our m-CAK
prescription, even when the selection of the wind parameters
is based on a unique solution coming from stellar parameters
(and then they are not free parameters), the subsequent spec-
tral fit is capable to adequately reproduce the lines in the optical
range. Some lines cannot be adjusted, such as the Hα emission
components for HD 57682 and HD 218915, because spherically
symmetric codes were used, but this is not a failure attributable
to the m-CAK method. As shown by Grunhut et al. (2012), CMF-
GEN is also not able to fit these additional emission components.
The exception is the poor fit for Hα in HD 195592, but as dis-
cussed in Sect. 5.5, this is an indicator that the limits of our
prescription coincide with the lower threshold of Teff ' 30 kK,
as stated in Sect. 2.4. Because of these reasons, we are confident
that our spectral fitting using the m-CAK prescription is reli-
able, and therefore the stellar and wind parameters determined
by our method are trustworthy. We expect in the future to extend
this analysis to UV spectra, where P Cygni profiles such as
O V λ1371, C IV λ1548, and N IV λ1718 will be useful to eval-
uate the terminal wind velocities and clumping factors (Bouret
et al. 2012; Šurlan et al. 2012).

6.4. Self-consistent WML relation

The wind-momentum-luminosity (WML) relation predicts a
strong dependence of the wind momentum rate on the stellar
luminosity with an exponent determined by the statistics of the
strengths of the hundreds of thousands of lines driving the wind
(see Puls et al. 2000). It also contains a weak dependence on
stellar radius. This is due to the work against the gravitational
potential that the stellar wind must overcome. This relation has
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Fig. 14. Wind momemtum, Dmom for the stars of our sample as a func-
tion of their luminosity. Filled red squares represent the momentum
derived from a homogeneous mass-loss rate (see Eq. (17)), and empty
red squares represent the clumped values for Ṁ. In addition, we over-
plot the results for O I stars from Kudritzki & Puls (2000, grey circles,
from their Fig. 8), the Galactic O-supergiants from Bouret et al. (2012,
green circles), and the field stars taken from Markova et al. (2018, blue
circles). The respective linear regressions from Table 13, following the
same colour convention, are also included.

been confirmed observationally using objects from the Milky
Way, the LMC, SMC, and other galaxies of the local group by
Bresolin et al. (2001, 2003), Urbaneja et al. (2002, 2003), Evans
et al. (2005, 2007), and Mokiem et al. (2005, 2006).

According to Kudritzki & Puls (2000), Dmom is defined as

Dmom = Ṁ3∞
√

R∗/R�, (15)

and the WML reads

log Dmom = log D0 + x log(L∗/L�). (16)

Figure 14 shows the WML for the sample of O I stars from
Kudritzki & Puls (2000) as grey circles and our results as red
squares. Additionally, we included Dmom values for the sample
of field stars from Bouret et al. (2012), whose values for mass-
loss rate and terminal velocities are based on spectral fitting; and
Markova et al. (2018), which are based on unclumped values for
the mass-loss rate and hence were previously used to compare
with self-consistent solutions (Gormaz-Matamala et al. 2019,
Fig. 13). Although our sample is reduced, our log Dmom clearly
accurately matches the values from Kudritzki & Puls (2000). To
make this comparison coherent, we used unclumped values for
our self-consistent mass-loss rates following

Dmom,hom = Ṁclump f 1/2
cl 3∞

√
R∗/R�. (17)

Finally, Table 13 compares the values of log D0 and x
(Eq. (16)) from Kudritzki & Puls (2000) and from Markova et al.
(2018) with our results. We observe that both Bouret et al. (2012)
and Markova et al. (2018) list a deviation from the original fit
of Kudritzki & Puls (2000), but are still within the limits of
the standard deviations of log D0 and x. On the other hand, our

Table 13. Comparison of the coefficients of the wind momentum-
luminosity.

Source log D0 x

Kudritzki & Puls (2000, O I) 20.69± 1.04 1.51± 0.18
Kudritzki & Puls (2000, O III, V) 19.87± 1.21 1.57± 0.21
Bouret et al. (2012) (unclumped) 21.93± 1.08 1.33± 0.18

Markova et al. (2018) 18.46± 1.45 1.96± 0.26
This work (unclumped) 19.91± 1.16 1.65± 0.20
This work (clumped) 20.91± 1.74 1.42± 0.32

homogeneous values for Dmom follow almost the same trend as in
the previous studies. This is particularly clear in Fig. 14, where
empty squares (clumped Ṁ) lie slightly out of the main band, but
filled squares (unclumped Ṁ) lie inside it. Despite these encour-
aging results, the fits introduced in Table 13 represent a simple
linear regression based on a few points, and we certainly need to
expand our sample and extend our analysis to UV wavelengths
to provide a more accurate conclusion.

7. Conclusions

We have exploited the potential of the m-CAK prescription per-
formed by Gormaz-Matamala et al. (2019, Paper I) to derive
self-consistent wind parameters by performing spectral fittings
for a sample of six O-type stars (HD 192639, 9 Sge, HD 57682,
HD 218915, HD 195592, and HD 210809) observed with the
high-resolution echelle spectrograph HERMES. In addition, the
m-CAK prescription has been improved to include a temperature
structure throughout the wind, together with a more exhaustive
quantitative implementation of the uncertainties associated with
each model of self-consistent solution.

In a broader context, self-consistent synthetic spectra agree
well with HERMES observations, which are no longer based
on a β-law for their velocity profiles. Improvements could be
made using this method to fit Hα in particular, but this would
undermine the quality of the fit for the remaining lines. This
success reinforces the validity of the set of new stellar and
wind parameters introduced in this work for our sample of stars,
especially when there are significant differences with previous
literature. These differences can be attributed to the previous
usage of a β-law, in contrast with our self-consistent hydrody-
namics calculations. Nevertheless, our method treats clumping
as a free parameter that is only modified when the line fits are
fine-tuned (Sect. 4.2), even when it is known that clumps affect
the line-acceleration (Gormaz-Matamala et al. 2021) because
inhomogeneities are currently not included when the line-force
parameters are calculated (Sect. 2). A full implementation of
clumping would require a thorough analysis to describe the wind
inhomogeneities (Šurlan et al. 2012, 2013). In addition, the inclu-
sion of UV spectral analysis will complement the constraint of
mass-loss rate and clumping. However, this is beyond the scope
of this work, and here we just introduce the first attempt to
derive stellar and wind parameters for O-type stars through a
spectral analysis considering the self-consistent wind hydrody-
namics. We expect that the values introduced here are helpful
for future studies of all the stars constituting this sample.

The qualitative diagnostics and the detailed analysis of the
self-consistent wind solutions obtained for some stars establish
that the validity of our m-CAK prescription applies to O-type
stars with Teff ≥ 30 kK and log g ≥ 3.2 (although the threshold
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for effective temperature should increase if we consider rota-
tional velocity Ω > 0.2). We remark that this range of validity
is where the line-force parameters (k, α, δ)sc can be fitted from
the force multiplierM(t) assuming them to be constants instead
as a function of radius, because their variance is below the
common uncertainties associated with stellar parameters. Sub-
sequently, these thresholds indicate that self-consistent solutions
can describe the winds of massive stars from their birth on the
main sequence and cover then a large part of their lifetime in this
stage before their evolution into later-type stars. This aspect is
incorporated in Gormaz-Matamala et al. (in prep.).
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Appendix A: Tau

The relation between the radiative acceleration and

grad(r) =
κFL∗
4πcr2 =

κFF(r)
c

, (A.1)

with

κFF(r) =

∫ ∞

0
κνFνdν . (A.2)

τF(r) =

∫
κF ρ(r)

(R∗
r

)2

dr ,

=

∫
cgrad

F(r)
ρ(r)

(R∗
r

)2

dr ,

=

∫
grad

4πcr2

L∗
ρ(r)

(R∗
r

)2

dr ,

=
4πcR2

∗
L∗

∫
grad ρ(r) dr ,

=
4πcR2

∗
L∗

∫
(gline + ges) ρ(r) dr ,

=
4πcR2

∗
L∗

∫
(gline + ggravΓes) ρ(r) dr . (A.3)

Therefore, for the temperature field,

T (r) = Teff

[
W(r) +

3
4
τF

]1/4

,

= Teff

[
W +

3πcR2
∗

L∗

∫
(gline + ggravΓes) ρ dr

]1/4

. (A.4)

To numerically solve the integral, see Appendix B.

Appendix B: Numerical integral

We have the integral∫ ∞

r
(gline + ggravΓes) ρ(r′) dr′ . (B.1)

Being x(r) = grad ρ(r) and X =
∫

xdr, the integral can be
rewritten in a discrete way as

Xi =

N∑
i

xi + xi+1

2
× (ri+1 − ri) . (B.2)

The problem with this formulation is that for the last item of the
grid (i.e. when i = N), ∆r has no definite value because the limit
is the infinite. In this case, it is better to perform a change of
variables over the integral. Using the auxiliar variable u = −1/r
and therefore∫ 0

−1/u
(gline + ggravΓes) ρ(u′)

dr′

du′
du′ . (B.3)

Discretisation is then

Xi =

N∑
i

xi + xi+1

2
ui+1 − ui

u2
i

. (B.4)
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